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ON THE ZEROS OF THE RAMANUJAN T-DIRICHLET SERIES 

IN THE CRITICAL STRIP 

J. B. KEIPER* 

ABSTRACT. We describe computations which show that each of the first 12069 
zeros of the Ramanujan r-Dirichlet series of the form a + it in the region 
0 < t < 6397 is simple and lies on the line a = 6. The failures of Gram's law 
in this region are also noted. The first 5018 zeros and 2228 successive zeros 
beginning with the 20001st zero are also calculated. The distribution of the 
normalized spacing of the zeros is examined and it appears to be that of the 
eigenvalues of random matrices. These comptuations are done with a Berry- 
Keating formula for the r-Dirichlet series and evaluated using MathematicaTM. 

1. INTRODUCTION 

The Ramanujan r-function [5] is defined in terms of its generating function 

00 00 

(1) g(z) = z Z7(i - zk)24 = ET o Zn 

k=1 n=1 

We consider the associated Dirichlet series 
00 

(2) fn(s) = Z Tnrs 

n=1 

which is also given by the integral 

1 roo 

(3) f(s) = F() / xs-lg(e-) dx. 

This Dirichlet series has been studied by several authors, notably [4, 9, 10]. We 
have the functional equations 

(4) z6g(e-2z) = 16(e- ) 

and 

(5) (27w)sF(6 - s)f (6 - s) = (27w)-sT(6 + s)f (6 + s). 
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As with the Riemann (-function, we can use the functional equation for f to split 
f into the product of two functions 

(6) f(6 + it) = Z(t)e-iO(t) 

where 

(7) 

Z~t =F( + t~ ( +it) (27yiVIt) ? sinh(wrt) Z(t) = F(6 ? it)f(6 ? ?t)(27T) it0/7rt(l + t2)(4 +t2)(9 + t2)(16 + t2)(25 + t2)' 

(8) 7(t) = -2 log F(6 + it) _ tlog(27r), 

and the branch of the logarithm in the formula for O(t) is chosen so that V(0) = 

0 and O(t) is continuous for real t. The functions Z and V are even and odd, 
respectively. Moreover, we have asymptotically for large t, I arg tj <7r/2, 

t 117r 181 26999 1115101 23237999 
=9t t log--? - 2+ 

27r t+ 4 - 12t +360t3 1260t5 ? 1680t7 

295081381 1742885234309 .15472974061 
1188t9 360360t1 - 156t13 

Now, just as in the case of the Riemann (-function, because Z(t) is real for real 
t (which corresponds to the critical line), we can search for zeros on the critical line 
by finding sign changes in Z(t). Moreover, we have that the number of zeros in the 
critical strip a + it where 5.5 < a < 6.5 and 0 < t < T is given by 

(10) N(T) =1-(Q9(T) + Im log f(6 + iT)), 
7r 

where the branch of log f(6 + iT) is chosen so as to make log f continuous along 
the polygonal path from 12 to 12 + iT to 6 + iT. Thus we can count the number of 
zeros in the critical strip and, because N(T) must be an integer, we have a second 
check on the errors in V (T) and f(6 + iT). 

As with the (-function, we define the Gram points gn to be the solutions to 

(11) d(gn) = n7r, 

where n is an integer. "Gram's law", which says that the sign of Z(gn) should 
be (-l)n, works nearly all of the time. Thus, finding sign changes costs on aver- 
age only slightly more than a single evaluation of Z. A Gram point gn is called 
"good" if (-l)n Z(gn) > 0, otherwise it is called "bad". A Gram block of length 
k is an interval gn < t < gn+k where gn and 9n+k are good Gram points, but 
gn+i ... ,gn+k-1 are bad Gram points. "Rosser's rule" says that each Gram block 
of length k contains k zeros. 

2. EVALUATION OF THE DIRICHLET SERIES 

Neither the integral expression for f(s), (3), nor a formula based on this ex- 
pression but expressed in terms of the incomplete gamma function are effective for 
calculating f (s) far up in the critical strip. The problem is severe cancellation of 
digits: (empirically) about t/2 digits are lost when evaluating f (6 + it) using these 
formulae. Repeatedly applying summation by parts to (2), (cf. [10]), also known 
as Abel summation, works somewhat better, although huge tables of partial sums 
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of Tn must be stored and high-precision arithmetic must still be employed. The 
first 642 zeros (up to t = 571.756 ... ) were calculated to about 35 digits using this 
method. 

For large t, the most effective way to evaluate Z(t) is with the asymptotic Berry- 
Keating formula (cf. [1]): 

(12) Z(t) Zo(t, K) + Z3(t, K) + Z4(t K) + *I 

where 
00 

1 ~~~~t) t'~ 
(13) Zo (t, K) = 2ReZ (n6 ei(a(t)-t log n) _ erfc (K, t) '}J 

(14) Zmn(t, K) = :(t/2 (m(j)m bm 
(t)_ (ri9tcolog n) 

(15) E zmbm(t) = exp (iRe(z +t) -(t)e-z'(t))- z2'0 (t))-1 

m=3 ~ ~ ~ ~ ~ ~~~~= 

= exp (i EZk Imi (6 +6?it) ) 

(16) t(n, t) = log - t) 
and 

(17) Q2 (K t) = K2 - itiY2(t). 

It should be noted that while convergence for the c-function begins near n = 

/t/(2ir), convergence for the -r-Dirichlet series does not begin until n t/(2w). 
This is a result of the fact that the dominant terms in the expansions for 6J(t) and 
9(t) differ by a factor of 2. 

3. RESULTS 

Although the zeros calculated with the Berry-Keating formula agree very well 
with the zeros calculated using Abel summation, because the formula is asymptotic 
and actually diverges, results based on it cannot be regarded as truly rigorous. 
Nevertheless, we are confident that the values for the zeros are correct to within 
0.000001. The programming and the evaluation of the zeros was all done using 
MathematicaTM on SPARC and NeXT workstations of modest speed. A single 
evaluation of Z(t) near t = 10000 took on the order of 6 minutes. Because of the 
high cost of evaluation of Z(t), the zeros were found by finding the appropriate zero 
of the polynomial that interpolates some 10 nearby values of Z(t), evaluating Z(t) 
at that zero, adding the new value to the data being interpolated, and iterating 
until I Z(t) I < 0.00000001. Using this "glorified secant" method, each zero costs 
about 3 evaluations of Z(t). 

We found that each of the first 12069 zeros of the Ramanujan r-Dirichlet series 
of the form T + it in the region 0 <t <e6397 is simple and lies on the line ui = 6. 
In this range Gram's law fails 897 times and is correct 11172 times. In the region 
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9877.7 < t < 10822.6 there are 2228 zeros, all of which are simple and lie on 
the critical line. In this range Gram's law fails 223 times. Rosser's rule was not 
observed to fail. In Table 1 we present counts of the various types of Gram blocks 
encountered. 

TABLE 1. Number of Gram blocks of various types among (A) the 
first 12068 Gram intervals and (B) 2228 Gram intervals beginning 
with the 20000th interval 

length zero pattern count A count B 
1 (1) 10323 1800 
2 (0, 2) 403 90 
2 (2, 0) 397 98 
3 (0, 1, 2) 16 4 
3 (2, 1, 0) 17 7 
3 (0, 3, 0) 14 5 
4 (0, 1, 3, 0) 1 1 

Although an exhaustive search for extrema of Z(t) was not performed, large 
extrema seem to increase in a way consistent with a Lindel6f hypothesis. Table 2 
gives examples of large and small extrema, respectively. 

TABLE 2. Large and small extrema of Z(t) 

t Z(t) 
238.53 -6.432 
256.45 6.220 t Z(t) 
296.44 7.648 243.83 -0.0931887 
468.82 -7433 325.66 0.0664191 
773.14 -10.124 381.27 0.0577698 
885.75 10.2171 62583 0.0278474 
921.85 -11.309 2152.88 -0.0270708 

2046.30 11.523 10006.36 0.0154048 
2526.42 -12.587 10297.21 0.0209262 
2997.87 12.990 10429.43 0.0036954 
3927.96 13.90110858 00692 
4438.90 -13.935108.8-0692 
5840.54 15.527 

10358.02 -15.627 

We also located the first 5018 zeros and the 2228 zeros between t = 9877.7 and 
t = 10822.6, i.e., the 20001st through the 22228th zeros. The spacing between 
successive zeros 6 + i-yn and 6 + i-yn+l was normalized to be 

6 = (+l 2 a) log(wn+leyn/(27)2) 

and central moments of the normalized spacing were calculated. Note that this 
normalization is slightly different from that of [7] in that it attempts to address a 
slight bias for small AYn. The results are presented in Table 3, where the moments for 
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the distribution associated with a Gaussian unitary ensemble (GUE) are included 
for comparison. 

TABLE 3. Moments of 6E - 1 for (A) the first 5017 zero-pairs and 
(B) 2227 zero-pairs beginning with the 20001st pair 

k A B GUE 
2 0.1371 0.1530 0.1800 
3 0.0128 0.0203 0.0380 
4 0.0520 0.0663 0.1013 
5 0.0158 0.0276 0.0656 
6 0.0320 0.0500 0.1110 
7 0.0182 0.0385 0.1243 
8 0.0269 0.0569 0.1969 
9 0.0216 0.0610 0.2902 

10 0.0276 0.0860 0.4881 

Figures 1 and 2 show the pair correlation of the zeros of Z(t) for the two sets of ze- 
ros. The solid lines in both figures are the GUE prediction y = 1- ((sin rx)/(7rx))2. 
See [7] for further details of this common type of plot. 

*0 0 

1 

0.8 / t. 

0.4 

@0 

0.2 

0 0.5 1 1.5 2 2.5 3 

FIGURE 1. Pair correlation function: first 5018 zeros 

We further investigated an implication of the Riemann hypothesis for the r- 
Dirichlet function f (s). This investigation was analogous to that of [10]. We first 
define 

(18) i(s) = (27r)-12sr(12s)f (12s). 
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FIGURE 2. Pair correlation function: zeros 20001 through 22228 

By an argument essentially the same as that for Riemann's (-function (cf. [2, pp. 
39-47]) we can show that 

(19) i(s) = 1(0) J7(i 2s- 

where the product is over all of the zeros of f and 

(20) ((0) = ((1) = (27r)-12F(12)f (12) = 0.010486273129241.... 

Furthermore, 

(21) ((s)= j (z 25+ l2-12s) )dz. 

Consider now the coefficients Ak, where 

WM 
~~~00 

(22) log k(1 s) 

(23) Ao = 0, 

(24) Ak E ? 1i ( '-j _ )cj (for k > 1), 
j=1 3 

(25) Ak = L p 

It is clear from (25) that the Riemann hypothesis for f implies that Ak > 0 for all 
positive k. As in [6], if we assume the Riemann hypothesis f, and further that the 
zeros are very evenly distributed, we can show that 

6 
(26) Ak 12 log k - 12(log - + - 1). ir 
The first 800 values of Ak were found and they agree rather well with the above 
approximation. 
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4. CONCLUSIONS 

The calculations for this study were done using MathematicaTM. While this sys- 
tem proved to be quite useful for preliminary investigation and algorithm design, it 
is estimated that the investigation could be extended by several orders of magnitude 
if the algorithm were written in a low-level language and run on a fast computer. 
None of the calculations using the Berry-Keating formula required more precision 
than that provided by double-precision arithmetic, so considerable speedup can be 
expected. 

The Berry-Keating method appears to be quite general and is likely extendable 
to many Dirichlet series such as those described in [3] and [10]. 
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